9月5日,中國工程院院士、深圳大學特聘教授謝和平團隊與香港理工大學教授倪萌、南京工業大學教授邵宗平在《自然—能源》發表研究成果。他們將機器學習、理論計算與陶瓷固體氧化物開發相結合,開發了一種經過實驗驗證的陰極材料機器學習篩選技術,快速、有效地從龐大的鈣鈦礦組分中篩選高活性固體氧化物燃料電池陰極材料。
燃煤電廠受卡諾循環限制,單位發電量的煤炭消耗量較高,且難以破解二氧化碳排放的技術瓶頸。謝和平團隊提出并正在攻關的近零碳排放直接煤燃料電池發電技術可打破卡諾循環限制,不通過燃燒,而是將改性煤炭的化學能通過電化學氧化過程直接轉換為電能,同時在系統內原位實現二氧化碳二次利用,具有能量轉換效率高、實現近零碳排放的特點。
謝和平團隊將機器學習技術應用于針對固體氧化物燃料電池高活性陰極材料篩選的攻關研究。該研究引入了與高溫下鈣鈦礦氧化物氧還原反應動力學反應速率強烈相關的路易斯酸性強度(ISA)作為描述符,并驗證了8種不同回歸模型的有效性。
最終,他們從機器自動生成、預測的6871種不同鈣鈦礦氧化物中篩選出了4種鈣鈦礦陰極材料并成功合成。在三維可視化示意圖中,4種陰極材料的本性活性Lg(ASR)符合與ISA描述符的大致線性趨勢。通過弛豫時間分布(DRT)模型與等效電路模型對其電化學交流阻抗譜進行分析與量化,4種鈣鈦礦氧化物陰極的中頻電阻呈現出較大差異,并且具有顯著的熱激活特征,即表面氧轉移相關過程為氧還原反應動力學的決定步驟。
實驗表征與密度泛函理論(DFT)計算闡明了鈣鈦礦氧化物路易斯酸性調控策略提升本征活性機理,揭示了路易斯酸性在A位和B位離子的極化分布引起電子對的偏移,進而降低了氧空位的生成能和遷移能壘的機制。
據科研團隊介紹,與高通量DFT計算方法相比,該方法無須建立分子模型,僅通過分子式對回歸模型進行訓練即可預測材料性能,打破了陰極材料開發效率低的技術壁壘,未來發展還需要加快材料數據庫建設。
根據中國汽車流通協會提供的上牌信息顯示,2025年5月,國內客車(含輕客、中客、大客)月度實際銷量達到4.2萬輛,相比去年同期呈負增長,降幅為1%。 上牌維度的客車終端實際銷量,更能反映國內客車市場需求的真實狀況,進一步拉長來看,今年前5個月的數據同樣不容樂觀。統計數據顯示,2025年1-5月,國內客車實際銷量達到19萬輛,與去年同期的銷量持平。 整體來看,進入2025年后,本輪始于2023年的國內客車市場快速放量,似乎已進入瓶頸期。 從年度銷量數據,可以明顯看到,2023年之前,國內客車市場進入增長停滯期,2019年銷量達到36萬輛后,此后4年時間都在35萬輛上下徘徊,始終難以突破。而2023年開始打破僵局,同比增速達到14%,年度銷量接近40萬輛,2024年快速拉升,年度銷量一舉突破50萬輛大關,而增速更是高達29%。 2023年和2024年的快速放量,與多重因素密切相關。首先是疫情結束后國內旅游市場的爆火,直接拉動2023年國內旅團細分市場的客車需求,此后,2024年7月,國家出臺以舊換新政策,推動城市公交車電動化替代,支持新能源公交車及動力電池更新,這一政策有力推動了公交車的更新熱潮,從而推動國內公交細分市場的客車需求集中爆發。 以公交市場為例,在2024...