通過這么多的積累,太陽能制氫有望在不遠的將來取得突破并實現工業化。
太陽能光催化反應可以實現分解水產生氫氣、還原二氧化碳產生太陽燃料,是科學領域“圣杯”式的課題,受到全世界關注。雖然在過去半個世紀的光催化研究中,人們已經在光催化劑制備和光催化反應研究方面做出了巨大的努力,但由于光催化反應中光生電荷的分離、轉移和參與化學反應的時空復雜性,人們對該過程的基本機制一直不清楚。
日前,這個謎團被中國科學院大連化學物理研究所(大連化物所)李燦院士、范峰滔研究員等揭開了。研究人員對光催化劑納米顆粒的光生電荷轉移進行全時空探測,“拍攝”到光生電荷轉移演化全時空影像。相關研究成果已于10月12日發表在國際學術期刊《自然》上。
研究成果文章的部分作者在實驗室合影,從左到右依次為范峰滔、李燦和陳若天。中科院大連化物所供圖
歷時二十多年,中國科學家攻破“光催化分解水的核心科學挑戰”
綠氫是實現工業和交通領域碳中和的主要路徑。綠氫從水中來,需要太陽能等可再生資源。
據中科院院士李燦介紹,過去幾十年,光電解水效率大幅度提升,但整體水平仍然較低?!吧鲜兰o70年代,太陽能制氫效率極低,2000年后進展比較快,效率從0.5%發展到當前的1.5%左右?!?/p>
目前,光催化分解水研究大多集中在篩選光催化材料和優化器件工藝上,光生電荷動力學等研究相對薄弱,重大科學問題尚未解決?!疤柲芄獯呋瘎┮岣咝?,需要優化三個方面的效率,包括捕光、電荷分離和催化轉化。其中,電荷分離是最關鍵、最微觀的一步,所以我們優先研究了這個問題。”
他說,光催化分解水的核心科學挑戰在于如何實現高效的光生電荷的分離和傳輸。由于這一過程跨越從飛秒到秒、從原子到微米的巨大時空尺度,揭開全過程的微觀機制極具挑戰性。“20多年來,我們的團隊前赴后繼,一直致力于解決這一問題?!?/p>
就醫經歷為成像研究帶來啟發
范峰滔說,為了開展這項研究,他博士畢業后的研究方向從原來的分子篩合成光譜表征轉為光催化成像。最初他比較迷茫,李燦院士在2010年的一次就醫經歷給他帶來了啟發?!爱敃r基于血管成像介入手術的啟發,李老師(李燦)在病床上打電話和我交流,認為光譜成像方向值得考慮,由此為我指明了方向?!?/p>
范峰滔研究員在調試表面光電壓成像儀器。中科院大連化物所供圖
經過摸索,范峰滔計劃以原子力顯微鏡、光學和半導體晶面性質為基礎開展工作。由于缺少合適的儀器設備,團隊開始親自設計、自主研發。2012年,范峰滔找了一間不到20平方米的房間,和同學們一起搭建設備儀器,并逐步改進實驗儀器和方法。
據李燦介紹,科研人員通過集成結合多種先進的表征技術和理論模擬,包括時間分辨光發射顯微鏡(飛秒到納秒)、瞬態表面光電壓光譜(納秒到微秒)和表面光電壓顯微鏡(微秒到秒)等,像接力賽一樣,首次在一個光催化劑顆粒中跟蹤電子和空穴到表面反應中心的整個機制。“這為理性設計性能更優的光催化劑提供了新的思路和研究方法?!?/p>
未來,這個成果有望促進太陽能光催化分解水制取太陽燃料的應用,為人類生產和生活提供清潔、綠色的能源。
李燦說,按照經濟上的評估,太陽能制氫效率達到5%就可以進行工業化中試,效率如果達到10%,就和最便宜的化石資源制氫成本相近。“通過這么多的積累,太陽能制氫有望在不遠的將來取得突破并實現工業化?!?/p>
軌道交通展消息 2025年4月,31個?。ㄗ灾螀^、直轄市)和新疆生產建設兵團共有54個城市開通運營城市軌道交通線路326條,運營里程10975.8公里,實際開行列車361萬列次,完成客運量28.5億人次,進站量17.0億人次。4月份,客運量環比減少0.3億人次,減少1.0%,同比增加0.9億人次,增加3.3%。4月份全國總運營里程的平均客運強度為0.865萬人次每公里日,環比增加2.1%,同比減少3.5%。本月無新開通線路。 其中,43個城市開通運營地鐵、輕軌線路268條,運營里程9507.8公里,完成客運量27.5億人次,進站量16.3億人次;16個城市開通運營單軌、磁浮、市域快速軌道交通線路25條,運營里程970.7公里,完成客運量8695萬人次,進站量5809萬人次;18個城市開通運營有軌電車、自動導向軌道線路33條,運營里程497.3公里,完成客運量1047萬人次,進站量990萬人次。 相關推薦:軌道交通展展位預訂??軌道交通展免費報名參觀